Interpretative Erschlossenheit der endlichen Existenz und mathematische Unendlichkeit. Zur Oskar Beckers Phänomenologie des Transfiniten
Interpretative Erschlossenheit der endlichen Existenz und mathematische Unendlichkeit. Zur Oskar Beckers Phänomenologie des Transfiniten
Author(s): Dimitri GinevSubject(s): Philosophy
Published by: Societatea Română de Fenomenologie
Keywords: mathematical existence; immanent transcendence; constitutional analysis; constructivism; hermeneutic fore-structure
Summary/Abstract: Th e paper attempts to elucidate and evaluate Oskar Becker’s search for a complementarity between the paradigm of constitutional analysis put forward by Heidegger’s hermeneutic phenomenology and constructivism as a meta-mathematical position suggesting criteria for existence of the mathematical objects. At stake is the issue of the possibility of an existential analytic of “the mathematical”. In this regard, a special attention is paid to the temporality of “mathematical existence”. The paper invites new forms of a dialogue between phenomenology and philosophy of mathematics.
Journal: Studia Phaenomenologica
- Issue Year: IX/2009
- Issue No: 9
- Page Range: 495-508
- Page Count: 14
- Language: German
- Content File-PDF